Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: Joint crystallographic and chemical characterization at the nanometer scale by correlative TEM and atom probe tomography. Workshop: White-etching layers in ball and roller bearings, Informatik-Zentrum Hörn, Aachen, Germany (2014)
Zaefferer, S.: Texture and microstructures of thin film solar cells. Autumn School on Microstructural Characterization and Modelling of Thin-Film Solar Cells, Potsdam, Germany (2014)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Characterization and modeling of the propagation of creep dislocations from the interdendritic boundaries in single crystal Ni base superalloys. International Workshop on Modelling and Simulation of Superalloys, Bochum, Germany (2014)
Zaefferer, S.; Mandal, S.; Bozzolo, N.: Correlative Measurement of the 5-parameter Grain Boundary Character and its Physical and Chemical Properties. MSE 2014, Darmstadt, Germany (2014)
Schemmann, L.; Romano Triguero, P.; Zaefferer, S.: Eine Untersuchung zur ferritisch-bainitischen Umwandlung in einem Dualphasenstahl unter Verwendung von EBSD-basierten Misorientierungsmessungen. Arbeitskreistreffen: Mikrostrukturcharakterisierung im REM, Düsseldorf, Germany (2014)
Zaefferer, S.: Quantitative analysis of crystal defects by means of EBSD and related methods. Arbeitskreistreffen: Mikrostrukturcharakterisierung im REM, Düsseldorf, Germany (2014)
Zaefferer, S.: Application of EBSD and ECCI for the Investigation of Microstructures of Engineering Materials. MSA EBSD 2014, Pittsburgh, PA, USA (2014)
Zaefferer, S.: Application of diffraction techniques in the scanning electron microscope for the investigation of microstructures of engineering materials. Deutsche Versuchsanstalt für Luft und Raumfahrt (DLR), Köln, Germany (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative TEM and APT. TMS 2014, Solid-State Interfaces III Symposium, San Diego, CA, USA (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative Transmission Electron Microscopy and Atom Probe Tomography. International Conference on Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Konijnenberg, P. J.; Stechmann, G.; Zaefferer, S.; Raabe, D.: Advances in Analysis of 3D Orientation Data Sets Obtained by FIB-EBSD Tomography. 2nd International Congress on 3D Materials Science 2014, Annecy, France (2014)
Ram, F.; Khorashadizadeh, A.; Zaefferer, S.: Kikuchi Band Sharpness: A Measure for the Density of the Crystal Lattice Defects. MSE 2014, Darmstadt, Germany (2014)
Ram, F.; Zaefferer, S.: Accurate Kikuchi band localization and its application for diffraction geometry determination. HR-EBSD workshop, Imperial College, London, UK (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…