Harrison, P.; Zhou, X.; Das, S. M.; Lhuissier, P.; Liebscher, C.; Herbig, M.; Ludwig, W.; Rauch, E. F.: Reconstructing dual-phase nanometer scale grains within a pearlitic steel tip in 3D through 4D-scanning precession electron diffraction tomography and automated crystal orientation mapping. Ultramicroscopy 238, 113536 (2022)
Zhu, Z.; Ng, F. L.; Seet, H. L.; Lu, W.; Liebscher, C.; Rao, Z.; Raabe, D.; Nai, S. M. L.: Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Materials Today 52, pp. 90 - 101 (2022)
Wang, N.; Freysoldt, C.; Zhang, S.; Liebscher, C.; Neugebauer, J.: Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. Microscopy and Microanalysis 27 (6), pp. 1454 - 1464 (2021)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…