Harrison, P.; Zhou, X.; Das, S. M.; Lhuissier, P.; Liebscher, C.; Herbig, M.; Ludwig, W.; Rauch, E. F.: Reconstructing dual-phase nanometer scale grains within a pearlitic steel tip in 3D through 4D-scanning precession electron diffraction tomography and automated crystal orientation mapping. Ultramicroscopy 238, 113536 (2022)
Zhu, Z.; Ng, F. L.; Seet, H. L.; Lu, W.; Liebscher, C.; Rao, Z.; Raabe, D.; Nai, S. M. L.: Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Materials Today 52, pp. 90 - 101 (2022)
Wang, N.; Freysoldt, C.; Zhang, S.; Liebscher, C.; Neugebauer, J.: Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. Microscopy and Microanalysis 27 (6), pp. 1454 - 1464 (2021)
Devulapalli, V.; Bishara, H.; Ghidelli, M.; Dehm, G.; Liebscher, C.: Influence of substrates and e-beam evaporation parameters on the microstructure of nanocrystalline and epitaxially grown Ti thin films. Applied Surface Science 562, 150194 (2021)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…