Nascimento, A.; Roongta, S.; Diehl, M.; Beyerlein, I. J.: A machine learning model to predict yield surfaces from crystal plasticity simulations. International Journal of Plasticity 161, 103507 (2023)
Otto de Mentock, D.; Roongta, S.; Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F.: Challenges of Developing and Scaling up DAMASK, a Unified Large-strain Multi-physics Crystal Plasticity Simulation Software. TMS - Algorithm Development in Materials Science and Engineering, Orlando, FL, USA (2024)
Roters, F.; do Nascimento, A. W. P.; Roongta, S.; Diehl, M.: An optimized method for the simulation-based determination of initial parameters of advanced yield surfaces for sheet metal forming applications. Complas 2021, online (2021)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.