Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations. Journal of Materials Processing Technology 277, 116449 (2020)
Han, F.; Roters, F.; Raabe, D.: Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver. International Journal of Plasticity 125, pp. 97 - 117 (2020)
Chen, Y.; Cheng, L.; Yang, G.; Lu, Y.; Han, F.: Deformation behavior of a β-solidifying TiAl alloy within β phase field and its effect on the β→α transformation. Metals 8 (8), 605 (2018)
Yang, G.; Ren, W.; Liu, Y.; Song, W.; Han, F.; Chen, Y.; Cheng, L.: Effect of pre-deformation in the β phase field on the microstructure and texture of the α phase in a boron-added β-solidifying TiAl alloy. Journal of Alloys and Compounds 742, pp. 304 - 311 (2018)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modeling of plasticity. ICIAM 2019 - The 9th International Congress on Industrial and Applied Mathematics, Valencia, Spain (2019)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modelling of sheet metal forming by coupling FEM with a CP-Spectral solver using the DAMASK modelling package. 10th European Solid Mechanics Conference (ESMC2018), Bologna, Italy (2018)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.