Grabowski, B.: Ab initio calculation of thermodynamic properties of metals: xc-related error bars and chemical trends. ADIS 2006, Ringberg Castle, Germany (2006)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Temperature dependent properites of Shape-memory alloys. Physics Seminar of Loughborough University, Loughborough, UK (2006)
Grabowski, B.: Ab initio based free energy surfaces: A tool to derive temperature dependent thermodynamic and kinetic parameters. DPG-Jahrestagung, Berlin, Germany (2005)
Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: A computationally highly efficient ab initio approach for melting property calculations and practical applications. CALPHAD 2024, Mannheim, Germany (2024)
Dutta, B.; Körmann, F.; Alling, B.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Interaction of magnetic and lattice degrees of freedom. International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS 2016), Ringberg Castle, Tegernsee, Germany (2016)
Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: CALPHAD assessments using T > 0K ab initio data: From quasiharmonic to local anharmonic approximation. CALPHAD 2015, Loano, Italy (2015)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio concepts for an efficient and accurate determination of thermodynamic properties up to the melting point. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Magnetic contributions to the Thermodynamics of iron and Cementite. 448. WE-Heraeus-Seminar "Excitement in magnetism", Ringberg Castle, Tegernsee, Germany (2009)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Anharmonicity and vacancies in aluminum. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…