Dsouza, R.; Poul, M.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free computation of finite temperature material properties in isochoric and isobaric ensembles using the mean-field anharmonic bond model. Physical Review B 109, 064108 (2024)
Dsouza, R.; Huber, L.; Grabowski, B.; Neugebauer, J.: Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping. Physical Review B 105 (18), 184111 (2022)
Dsouza, R.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free thermodynamics in bulk crystalline metals from the mean-field anharmonic bond model. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…