Wang, Z.; Gu, J.; An, D.; Liu, Y.; Song, M.: Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI. Intermetallics 121, 106788 (2020)
An, X.; Wang, Z.; Ni, S.; Song, M.: The tension-compression asymmetry of martensite phase transformation in a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Science China Materials 63 (9), pp. 1797 - 1807 (2020)
Wang, Z.; Lu, W.; Raabe, D.; Li, Z.: On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds 781, pp. 734 - 743 (2019)
Li, Z.; Su, J.; Lu, W.; Wang, Z.; Raabe, D.: Metastable high-entropy alloys: design, structure and properties. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…