Ma, Y.: Basic science behind sustainable ironmaking with hydrogen and ammonia. International Seminar on Hydrogen Use in Process Metallurgy, Trondheim, Norway (2024)
Ma, Y.: Microstructure evolution during hydrogen-based direct reduction of iron oxides. International Workshop on Sustainable Metallurgy of Green Steel (GreenSteel2022), online (2022)
Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Ma, Y.; Zaefferer, S.; Raabe, D.: Hydrogen-based direct reduction of iron ores: Microstructure, crystallography, and reduction mechanisms. 2021 International Metallurgical Processes Workshop for Young Scholars (IMPROWYS2021), a hybrid event, Online (2021)
Ma, Y.: Materials Characterization – Introduction to X-ray Diffraction. Lecture: International Max Planck Research School for Interface Controlled Materials for Energy Conversion (IMPRSURMAT), online, 2021-08
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…