Saveleva, V. A.; Wang, L.; Kasian, O.; Batuk, M.; Hadermann, J.; Gallet, J.-J.; Bournel, F.; Alonso-Vante, N.; Ozouf, G.; Beauger, C.et al.; Mayrhofer, K. J. J.; Cherevko, S.; Gago, A. S.; Friedrich, K. A.; Zafeiratos, S.; Savinova, E. R.: Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers. ACS Catalysis 10 (4), pp. 2508 - 2516 (2020)
Shkirskiy, V.; Speck, F. D.; Kulyk, N.; Cherevko, S.: On the time resolution of electrochemical scanning flow cell coupled to downstream analysis. Journal of the Electrochemical Society 166 (16), pp. H866 - H870 (2019)
Kasian, O.; Grote, J.-P.; Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J.: The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium. Angewandte Chemie International Edition 57 (9), pp. 2488 - 2491 (2018)
Cherevko, S.: Stability and dissolution of electrocatalysts: Building the bridge between model and “real world” systems. Current Opinion in Electrochemistry 8, pp. 118 - 125 (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.