Lymperakis, L.: Surface rehybridization and strain effects on the composition and the properties of ternary III Nitride alloys. 19th International Conference on Crystal Growth and Epitaxy, Keystone, CO, USA (2019)
Lymperakis, L.: Elastically Frustrated Rehybridization: Implications in Alloy Ordering and Strong Compositional Limitations in Epitaxial InGaN Films. 1st German Austrian Conference of Crystal Growth, Vienna, Austria (2018)
Lymperakis, L.: Physics, growth mechanisms, and peculiarities of III-N surfaces from ab-initio. Seminar at Institute for solid state physics, Technical University Berlin, Berlin, Germany (2017)
Lymperakis, L.: Elastically frustrated rehybridization of InGaN surfaces: Implications on growth temperature and alloy ordering. Spring school on short period superlattices, Warsaw, Poland (2017)
Lymperakis, L.: Epitaxial Growth of III-Nitrides: Insights from Density Functional Theory Calculations. Seminar at University of Crete, Physics Department, Crete, Greece (2016)
Lymperakis, L.: Interplay of kinetics and thermodynamics of epitaxially grown wide bandgap semiconductors. 10th Asian-European Conference on Plasma Surface Engineering, Jeju Island, South Korea (2015)
Lymperakis, L.; Weidlich, P. H.; Eisele, H.; Schnedler, M.; Nys, J.-P.; Grandidier, B.; Stievenard, D.; Dunin-Borkowski, R.; Neugebauer, J.; Ebert, P.: Revealing Hidden Surface States of Non-Polar GaN Facets by an Ab Initio Tailored STM Approach. 10th International Conference on Nitride Semiconductors, Washigton DC, USA (2013)
Schulz, T.; Remmele, T.; Markurt, T.; Korytov, M.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.: Alloy fluctuations in III-Nitrides revisited by aberration corrected transmission electron microscopy. International Workshop on Nitride Semiconductors 2012, Sapporo, Japan (2012)
Lymperakis, L.: Ab initio calculations of energetics, adatom kinetics, and electronic structure of nonpolar and semipolar III-Nitride surfaces. PolarCoN Summer School, Kostanz, Germany (2012)
Albrecht, M.; Markurt, T.; Schulz, T.; Lymperakis, L.; Duff, A.; Neugebauer, J.; Drechsel, P.; Stauss, P.: Dislocation Mechanisms and Strain Relaxation in the Growth of GaN on Silicon Substrates for Solid State Lighting. International Conference on Extended Defects in Semiconductors, Thessaloniki, Greek (2012)
Lymperakis, L.; Albrecht, M.; Neugebauer, J.: Excitonic emission from a-type screw dislocations in GaN. International Conference on Extended Defects in Semiconductors, Thessaloniki, Greek (2012)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Towards an ab-initio based understanding of H-embrittlement: An atomistic study of the HELP mechanism. Joint Hydrogenius and ICNER International Workshop on Hydrogen-Materials Interactions, Kyushu, Japan (2012)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab-initio based comparitive study of In incorporation and surface segregation on III- and N-face {0001} InGaN surfaces. 9th International Conference of Nitride Semi-Conductors, Glasgow, UK (2011)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.