Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Ductility of Gamma-TiAl-Based Microstructures in the Light of Deformation Mode Interaction-Crystal Plasticity Modeling and Micro-Mechanical Experiments. MRS Fall Conference 2008, Boston, MA, USA (2008)
Counts, W. A.; Friák, M.; Battaile, C.; Raabe, D.; Neugebauer, J.: Multiscale Prediction of Polycrystal Elastic Properties of Ultralight Weight Mg-Li Alloys using Ab Initio and FEM Approaches. MRS Fall Conference 2008, Boston, MA, USA (2008)
Demir, E.; Raabe, D.; Zaefferer, S.: Quantification of Geometrically Necessary Dislocations Beneath Small Indents of Different Depths Using EBSD Tomography. MRS Fall Conference 2008, Boston, MA, USA (2008)
Knezevic, M.; Ma, D.; Raabe, D.; Kalidindi, S. R.; Friák, M.; Neugebauer, J.: Application of Spectral Methods for Anisotropy Design of Ti-Nb Polycrystals for Biomedical Applications based on ab Initio Elastic Single Crystal Constants and Fast Fourier Homogenization. MRS Fall Conference 2008, Boston, MA, USA (2008)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: Ground-state structure and elastic anisotropy of crystalline alpha-chitin: An ab-initio based conformational analysis. Materials Research Society meeting (MRS), Boston, MA, USA (2008)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Mechanical properties of ultrafine and fine grained dual phase steels. MS&T 2008 (Materials Science and Technology), Pittsburgh, PA, USA (2008)
Ma, A.; Friák, M.; Neugebauer, J.; Raabe, D.: Ab initio based design of alloys. MS&T'08, Symposium: Discovery and Optimization of Materials Through Computational Design, David Lawrence Convention Center, Pittsburgh, PA, USA (2008)
Counts, W. A.; Ma, D.; Friák, M.; Neugebauer, J.; Raabe, D.: Multiscale design of aluminium alloys based on ab-initio methods. ICAA 11 – 11th International Conference on Aluminium Alloys 2008, Aachen, Germany (2008)
Dmitrieva, O.; Raabe, D.: Investigation of microstructures in single crystals: Orientation patterning phenomena. IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Ruhr-Universität Bochum, Germany (2008)
Raabe, D.; Friak, M.; Neugebauer, J.; Counts, W. A.: Homogenization in Polycrystal Mechanics on the Basis of First Principles Simulations. IUTAM Symposium on Variational Concepts in Materials Mechanics, Ruhr-Universität Bochum, Germany (2008)
Schulz, S.; Winning, M.; Raabe, D.: A modified cellular automaton for the simulation of recrystallization in aluminum. ICAA 11 - International Conference on Aluminium Alloys 2008, Aachen, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…