Li, Z.; Raabe, D.: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Materials Chemistry and Physics 210, pp. 29 - 36 (2018)
Luo, H.; Li, Z.; Mingers, A. M.; Raabe, D.: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science 134, pp. 131 - 139 (2018)
Wang, M.; Li, Z.; Raabe, D.: In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Materialia 147, pp. 236 - 246 (2018)
Luo, H.; Li, Z.; Chen, Y.-H.; Ponge, D.; Rohwerder, M.; Raabe, D.: Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel. Electrochemistry Communucations 79, pp. 28 - 32 (2017)
Li, Z.; Sun, Y.; Lavernia, E. J.; Shan, A.: Mechanical Behavior of Ultrafine-Grained Ti–6Al–4V Alloy Produced by Severe Warm Rolling: The Influence of Starting Microstructure and Reduction Ratio. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46 (11), pp. 5047 - 5057 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…