Dehm, G.: Atomic resolution interface study of VN and Cu films on MgO using Cs corrected TEM. Microscopy Conference MC 2013, Regensburg, Germany (2013)
Dehm, G.: Struktur und Nano-/Mikromechanik von Materialien. Vorstandssitzung des Stahlinstituts VDEh und der Wirtschaftsvereinigung Stahl, Düsseldorf, Germany (2013)
Kirchlechner, C.; Liegl, W.; Motz, C.; Dehm, G.: X-ray μLaue: A novel view on fatigue damage at the micron scale. ECI on Nanomechanical Testing 2013, Olhão (Algarve), Portugal (2013)
Kirchlechner, C.; Motz, C.; Dehm, G.: A novel view on fatigue damage at the micron scale by X-ray µLaue diffraction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Deformation behavior of a Cr interlayer buried under Cu films on polyimide. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Dehm, G.: Prospects and experimental constraints of nano/micro-mechanical testing in materials science. GDRiCNRSMecano General Meeting, Ecole des Mines, Paris, France (2012)
Rashkova, B.; Moser, G.; Felber, H.; Grosinger, W.; Zhang, Z.; Motz, C.; Dehm, G.: A Novel Preparation Route to Obtain Micro-Bending Beams for In-situ TEM Studies. 9th Multinational Microscopy Conference 2009, Institute for Electron Microscopy Graz University of Technology , Graz, Austria (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…