Hassel, A. W.; Lill, K. A.; Rablbauer, R.; Stratmann, M.: Corrosion and passivity of FeAlCr light weight steels. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Isik-Uppenkamp, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe Microscopy for characterisation of iron mobility at buried interfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Hassel, A. W.; Lill, K. A.; Stratmann, M.: Microelectrochemical Investigations of the Corrosion Behaviour of Ferritic FeAlCr Steels. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan (2007)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Investigation of Erosion -Corrosion Phenomena with the Help of Single Impact Impingement Studies. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan (2007)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Studying Passive Materials under Erosion-Corrosion Conditions using Single Particle Impingement Experiments. 56rd Meeting of the International Society of Electrochemistry, Edingburgh, UK (2006)
Stratmann, M.: How do organic coatings protect metallic substrates against corrosion? New physical insight into the importance of electrified interface. TU Clausthal, Fakultätskolloquium, Clausthal-Zellerfeld, Germany (2006)
Stratmann, M.: Fundamental Research and Industrial Development: Synergy or Conflict? Perspectives of Research - Identification and Implementation of Research Topics by Organisations, Schloss Ringberg, Rottach-Egern, Germany (2006)
Rohwerder, M.; Stratmann, M.: Delamination of Polymer/metal Interfaces: On the Role of Electron Transfer Reactions at the Buried Interface. 209th Meeting of The Electrochemical Society, Denver, CO, USA (2006)
Stratmann, M.: Fundamental Research and Industrial Development: Synergy or Conflict? Conference "Perspectives of Research - Identification and Implementation of Research Topics by Organization", Schloss Ringberg, Kreuth, Germany (2006)
Hassel, A. W.; Smith, A. J.; Stratmann, M.: Schnelle Transientenmessungen zur Detektion von Einzelpartikeltreffern. Bunsenkolloquium „Elektrochemie von tiefsten zu höchsten Temperaturen und von kleinsten zu größten Strömen“, Dresden, Germany (2005)
Kawakita, J.; Hassel, A. W.; Stratmann, M.: High Voltage Anodisation of a NiTi shape memory alloy. 208th Meeting of The Electrochemical Society, Los Angeles, CA,USA (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.