Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
Stein, F.; Li, X.; Palm, M.; Scherf, A.; Janda, D.; Heilmaier, M.: Fe–Al Alloys with Fine-Scaled, Lamellar Microstructure: A New Candidate for Replacing Steels in High-Temperature Structural Applications? 60th Anniversary Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2014)
Stein, F.: Stability, Structure and Mechanical Properties of Transition-Metal-Based Laves Phases. Institut de Chimie et des Matériaux, CNRS-Université Paris Est, Paris, France (2013)
Stein, F.: Experiments on the Peritectoid Decomposition Kinetics of the Intermetallic Phase Nb2Co7. 4th Sino-German Symposium on Computational Thermodynamics and Kinetics and Its Application to Materials Processing, Bochum, Germany (2013)
Stein, F.; Vogel, S. C.: Structure and Stability of the γ Brass-Type High-Temperature Phases in Al-Rich Fe–Al(–Mo) Alloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Vogel, S. C.; Brown, D. W.; Okuniewski, M.; Stebner, A.; Stein, F.: Characterization of Intermetallics with the HIPPO & SMARTS Neutron Beam-Lines at LANSCE. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
He, C.; Stein, F.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb Systems. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; He, C.: Experimental Investigations of the Fe–Al–Nb System: Solidification and Liquidus Surface. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; Voß, S.; Palm, M.: Mechanical properties of transition-metal laves phases. Plasticity 2012, Symp. on Plasticity and Its Current Applications, San Juan, Puerto Rico (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…