Tasan, C. C.: Overcoming challenges in damage engineering: Design of reliable damage quantification methodologies and damage-resistant microstructures. TMS 2015, Orlando, FL, USA (2015)
Tasan, C. C.; Diehl, M.; Yan, D.; Raabe, D.: Coupled high-resolution experiments and crystal plasticity simulations to analyze stress and strain partitioning in multi-phase alloys. TMS2015, Orlando, FL, USA (2015)
Tasan, C. C.; Yan, D.; Raabe, D.: A novel, high-resolution approach for concurrent mapping of micro-strain and micro-structure evolution up to damage nucleation. TMS 2015, Orlando, FL, USA (2015)
Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: Lath martensite transformation, µ-plasticity and tempering reactions: potential TEM aids. Seminar at Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2015)
Tasan, C. C.: Doing more, with less, for longer:Designing high-performance eco-friendly materials guided by in-situ experiments and simulations. Invited Seminar at the Dept. of Mat. Sci. and Eng. of MIT, Boston, MA, USA (2015)
Tasan, C. C.: Investigating Stress - Strain Partitioning in Nanostructured Multi-phase Alloys by Coupled Experiments and Simulations. 3rd World Congress on Integrated Computational Materials Engineering, Colorado Springs, CO, USA (2015)
Tasan, C. C.: Doing more, with less, for longer: Designing high-performance eco-friendly materials guided by in-situ experiments and simulations. Invited Seminar at the Dept. of Mat. Sci. and Eng. of MIT, Boston, MA, USA (2015)
Tasan, C. C.; Morsdorf, L.: In-situ characterization of martensite plasticity by high resolution microstructure and strain mapping. ICM12, Karlsruhe, Germany (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…