Srikakulapu, K.; Qin, Y.; Sreekala, L.; Morsdorf, L.; Herbig, M.: On the decomposition resistance of carbonitride precipitates during high-pressure torsion in X30CrMoN15-1 bearing steel. High Nitrogen Steel conference, HNS 2021, online, Shanghai, China (2021)
Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Herbig, M.: Joint Nanoscale Structural and Chemical Characterization by Correlative Atom Probe Tomography and Transmission Electron Microscopy. Joint Workshop on Nano-Characterisation (4TU.HTM / M2i), Utrecht, The Netherlands (2019)
Herbig, M.: Atomare Einsichten in Struktur und Zusammensetzung von Stählen durch korrelative Elektronenmikroskopie / Atomsondentomographie. 25. Werkstoffkolloquium des Technischen Beirats, Hannover, Germany (2017)
Herbig, M.; Parra, C.D.; Lu, W.; Toji, Y.; Liebscher, C.; Li, Y.; Goto, S.; Dehm, G.; Raabe, D.: Where does the carbon atom go in steel? – Insights gained by correlative transmission electron microscopy and atom probe tomography. International Symposium on Steel Science 2017, Kyoto, Japan (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…