Cui, Y.; Lee, S.; Freysoldt, C.; Neugebauer, J.: Role of biaxial strain and microscopic ordering for structural and electronic properties of InxGa1-xN. Physical Review B 92 (8), 085204, pp. 5204 - 5210 (2015)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: The dangling-bond defect in amorphous silicon: Statistical random versus kinetically driven defect geometries. Journal of Non-Crystalline Solids 358 (17), pp. 2063 - 2066 (2012)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U.: Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion. Physical Review B 85 (19), 195202, pp. 1 - 8 (2012)
Mitra, C.; Lange, B.; Freysoldt, C.: Quasiparticle band offsets of semiconductor heterojunctions from a generalized marker method. Physical Review B 84 (19), 193304, pp. 1 - 4 (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio study of electron paramagnetic resonance hyperfine structure of the silicon dangling bond: Role of the local environment. Physical Review B 83 (14), 144110, pp. 1 - 8 (2011)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Native and hydrogen-containing point defects in Mg3N2: A density functional theory study. Physical Review B 81, 224109, pp. 1 - 10 (2010)
Freysoldt, C.; Boeck, S.; Neugebauer, J.: Direct minimization technique for metals in density-functional theory. Physical Review B 79, 241103(R), pp. 1 - 4 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.