Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Mesoscale modelling of the influence of loading conditions on the dislocation mobility and creep process in single crystal Ni base superalloys. KTH Stockholm-Sweden, Stockholm, Sweden (2014)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Investigations to understand the mechanisms during electropolishing of NiTi. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Electropolishing of NiTi - Insight its mechanism. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufac-turing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufacturing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Luo, W.: Mechanical properties of the cubic and hexagonal NbCo2 Laves phases studied by micromechanical testing. Dissertation, Ruhr-Universität Bochum (2019)
Wu , X.: Elementary deformation processes during low temperature and high stress creep of Ni-base single crystal superalloys. Dissertation, Ruhr-University Bochum, Bochum, Germany (2016)
Aghajani, A.: Evolution of microstructure during long-term creep of a tempered martensite ferritic steel. Dissertation, Ruhr-University Bochum, Bochum (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.