Hickel, T.: New Insights into H trapping and Diffusion in Metallic Microstructures Obtained from Atomistic Simulations. 2016 International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Intermartensitic Phase Boundaries in Ni–Mn–Ga Alloys: A Viewpoint from Ab initio Thermodynamics. 5th International Conference on Ferromagnetic Shape Memory Alloys, Sendai, Japan (2016)
Zendegani, A.; Körmann, F.; Hickel, T.; Hallstedt, B.; Neugebauer, J.: Thermodynamic properties of the quaternary Q phase in Al–Cu–Mg–Si: a combined ab-initio, phonon and compound energy formalism approach. International Conference on Advanced Materials Modelling (ICAMM), Rennes, France (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Phase diagrams in magnetic shape memory alloys: Insights obtained from ab initio thermodynamics. The forty-fifth International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, Awaji Island, Hyogo, Japan (2016)
Dutta, B.; Debashish, D.; Ghosh, S.; Sanyal, B.; Hickel, T.; Neugebauer, J.: Intricacies of phonon line shapes in random alloys: A first-principles study. DPG Spring Meeting of the Condensed Matter Section, Regensburg, Germany (2016)
Dutta, B.; Begum, V.; Hickel, T.; Neugebauer, J.: Impact of point defects on the phase stability in Heusler alloys: A first-principles study. DPG Spring Meeting of the Condensed Matter Section, Regensburg, Germany (2016)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Lattice excitations in magnetic alloys: Recent advances in ab initio modeling of coupled spin and atomic fluctuations. TMS Annual Meeting 2016, Nashville, TN, USA (2016)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Temperature-dependent coupling of atomic and magnetic degree of freedom from first-principles. Electronic Structure Theory for the Accelerated Design of Structural Materials, Moscow, Russia (2015)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.