Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Neugebauer, J.: Quantum mechanical design of structural materials on the computer. Colloquium at Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany (2015)
Neugebauer, J.: Introduction to density functional Theory from a materials science perspective. ICAMS course “Multiscale Modelling”, Bochum, Germany (2015)
Dey, P.; Nazarov, R.; Yao, M.; Friák, M.; Hickel, T.; Neugebauer, J.: Adaptive C content in coherently strained kappa-carbides - An ab initio explanation of atom probe tomography data. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: The itinerant coherent potential approximation for phonons: Role of fluctuations for systems with magnetic disorder. 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
Gupta, A.; Dutta, B.; Hickel, T.; Neugebauer, J.: Thermodynamic phase stability in the Al–Sc system using first principles methods. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Hickel, T.; Nazarov, R.; McEniry, E.; Dey, P.; Neugebauer, J.: Ab initio insights into the interaction of hydrogen with precipitates in steels. Workshop on Hydrogen Embrittlement and Sour Gas Corrosion 2015, Düsseldorf, Germany (2015)
Neugebauer, J.: Ab Initio Thermodynamics: A Novel Route to Design Structural Materials with Superior Mechanical Properties. TMS-MEMA Conference, Doha, Katar (2015)
Neugebauer, J.: Design and discovery of structural materials on the computer: Prospects and challenges. Colloquium at Universität Magdeburg, Magdeburg, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…