Roters, F.; Diehl, M.; Shanthraj, P.; Zambaldi, C.; Tasan, C. C.; Yan, D.; Raabe, D.: Simulation analysis of stress and strain partitioning in dual phase steel based on real microstructures. MMM2014, 7th International Conference on Multiscale
Materials Modeling
, Berkeley, CA, USA (2014)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage Resistance through Hierarchical Microstructure Development on GUM Metal. Materials Science and Engineering (MSE2014), Darmstadt, Germany (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. IUTAM Symposium on Connecting Multiscale Mechanics to Complex Material Design, Evanston, IL, USA (2014)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Influence of oxygen and cold deformation on the ω phase formation in gum metal. TMS 2014, San Diego, TX, USA (2014)
Güder, Ü.; Tasan, C. C.; Yavaş, A.: Iron from Kubad-Abad: Production Techniques of Iron Tools from a Medieval Anatolian Palace. European Association of Archaeologists 20th Annual Meeting, Istanbul, Turkey (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. 17th U.S. National Congress on Theoretical and Applied Mechanics Michigan State University, East Lansing, MI, USA (2014)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M. G. D.: Experimental challenges in continuum damage modeling. The International Symposium on Plasticity 2014, Freeport, Bahamas, USA (2014)
Tasan, C. C.; Jeannin, O.; Barbier, D.; Morsdorf, L.; Wang, M.; Ponge, D.; Raabe, D.: In-situ characterization of martensite plasticity by high resolution microstructure and microstrain mapping. ICOMAT 2014, International Conference on Martensitic Transformations 2014, Bilbao, Spain (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…