Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Janssens, K. G. F.; Raabe, D.; Kozeschnik, E.; Miodownik, M. A.; Nestler, B.: Computational Materials Engineering – An Introduction to Microstructure Evolution. Academic Press, Elsevier, USA (2007), 360 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of Materials. In: Structural Materials and Processes in Transportation, pp. 481 - 495 (Eds. Lehmhus, D.; Busse, M.; Herrmann, A. S.; Kayvantash, K.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Anwendung der Textur-Komponenten-Kristallplastizitäts-FEM für die Simulation von Umformprozessen unter Berücksichtigung des Texturgradienten. In: Prozessskalierung, Strahltechnik, Tagungsband des 2. Kolloquiums Prozessskalierung im Rahmen des DFG Schwerpunktprogramms Prozessskalierung, Vol. 27, pp. 157 - 166 (Ed. Vollertsen, F.). BIAS-Verlag, Bremen (2005)
Raabe, D.: Drowning in data - A viewpoint on strategies for doing science with simulations. In: Handbook of Materials Modeling, pp. 2687 - 2693 (Ed. Yip, S.). Springer, The Netherlands (2005)
Raabe, D.: Recrystallization Simulation by use of Cellular Automata. In: Handbook of Materials Modeling, pp. 2173 - 2203 (Ed. Yip, S.). Springer, Netherlands (2005)
Raabe, D.; Roters, F.: How do 10^10 crystals co-deform. In: Weitab vom Hookeschen Gesetz -- Moderne Ansätze der Ingenieurpraxis großer inelastischer Deformationen metallischer Werkstoffe (Eds. Kollmann, F. G.; G., G.; Akademie der Wissenschaften und der Literatur, Mainz, Germany). Franz Steiner Verlag, Stuttgart, Germany (2005)
Raabe, D.; Jovičević-Klug, M.; Ma, Y.; Büyükuslu, Ö.; Springer, H.; Rodrigues Souza Filho, I.: Hydrogen Plasma Reduction of Iron Oxides. Advances in Pyrometallurgy Symposium, held at the TMS Annual Meeting and Exhibition, TMS 2023, San Diego, CA, USA, March 19, 2023 - March 23, 2023. The Minerals, Metals & Materials Serie, pp. 83 - 84 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.