Calcagnotto, M.; Ponge, D.; Adachi, Y.; Raabe, D.: Effect of grain refinement to 1 µm on deformation and fracture mechanisms in ferrite/martensite dual-phase steels. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2010)
Dmitrieva, O.; Choi, P.; Ponge, D.; Raabe, D.; Gerstl, S. S. A.: Laser-pulsed atom probe studies of a complex maraging steel: Laser pulse energy variation and precipitate analysis. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Ponge, D.; Raabe, D.: Nano-particles and filaments in steels: From understanding to materials design. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Herrera, C.; Ponge, D.; Raabe, D.: Development of a high ductile lean duplex stainless steel. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Effect of grain refinement to 1µm on the mechanical properties of dual-phase steels. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2009), Glasgow, UK (2009)
Herrera, C.; Ponge, D.; Raabe, D.: Hot workability of 1.4362 duplex stainless steel. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, Scotland, UK (2009)
Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D.; Zaefferer, S.: 3D-EBSD Investigation on Orientation Gradients and Geometrically Necessary Dislocations Induced by the Martensitic Phase Transformation in Ultrafine Grained Dual-Phase Steels. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Mechanical properties of ultrafine and fine grained dual phase steels. MS&T 2008 (Materials Science and Technology), Pittsburgh, PA, USA (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…