Neugebauer, J.: Efficient coarse graining of stochastic high-dimensional configuration spaces as fundament for a fully ab initio based materials design. Colloquium WIAS, Berlin, Germany (2014)
Hickel, T.; Nazarov, R.; McEniry, E.; Dey, P.; Neugebauer, J.: Impact of light elements on interface properties in steels. CECAM workshop “Modeling Metal Failure Across Multiple Scales”, Lausanne, Switzerland (2014)
Hickel, T.; Körmann, F.; Bleskov, I.; Neugebauer, J.: Ab Initio Based Modelling of Stacking Fault Energies in High-Strength Steels. International Seminar on Process Chain Simulation and Related Topics, Karlsruhe, Germany (2014)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Stacking Fault Energies: A First Principles Investigation for fcc Iron. Condensed Matter - Université Paris Descartes, Paris, France (2014)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Stacking Fault Energies: A First Principles Investigation for fcc Iron. TMS 2014, San Diego, CA, USA (2014)
Dey, P.; Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab-initio study of hydrogen trapping by kappa-carbides in an austenitic Fe matrix. DPG Frühjahrstagung, Dresden, Germany (2014)
Dutta, B.; Hickel, T.; Neugebauer, J.: Coupling of lattice dynamics and magnetism in magnetic shape memory alloys: Consequences for phase diagrams. Asia Sweden meeting on understanding functional materials from lattice dynamics (ASMFLD) conference, Indian Institute of technology Guwahati, Guwahati, India (2014)
Freysoldt, C.; Neugebauer, J.: Point defects in supercells: Correction schemes for the dilute limit. Workshop on Ab-initio description of charged systems and solid/liquid
interfaces
, Santa Barbara, CA, USA (2014)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: Role of the defect creation strategy for modelling dangling bonds in a-Si:H. MRS Spring Meeting, San Francisco, CA, USA (2014)
Hickel, T.; Glensk, A.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Thermodynamics of materials up to the melting point: The role of anharmonicities. Asia Sweden Meeting on Understanding Functional Materials from Lattice dynamics, Guwahati, India (2014)
Körmann, F.; Hickel, T.; Neugebauer, J.: Phase stabilities of metals and steels - The impact of magnetic excitations from fi rst-principles. ADIS (Ab initio Description of Iron and Steel) Conference 2014 , Ringberg Castle, Rottach-Egern, Germany (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.