Biedermann, P. U.; Nayak, S.; Erbe, A.: Catching intermediates of the oxygen reduction reaction in situ: Insights from electrochemical ATIR-IR and DFT. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Chen, Y.; Erbe, A.: Probing interfacial layer thickness and electronic properties of electrochemical interfaces: The example of oxide on zinc. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Nayak, S.; Chia-Fu, C.; Erbe, A.: ATR-IR spectroscopic study of H2O and D2O in one-dimensional confinement. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Biedermann, P. U.; Nayak, S.; Erbe, A.: Towards Understanding the Mechanism of the Electrochemical Oxygen Reduction: DFT Modeling and Spectroelectrochemical Validation. Pacific Rim Meeting on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Chen, Y.; Schneider, P.; Erbe, A.: Investigation of electrochemical oxide growth on zinc by spectroscopic ellipsometry: An example of in operando spectroscopy. EMNT 2012 - 9th International Symposium on Electrochemical Micro & Nanosystem Technologies, Linz, Austria (2012)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: Biological D-surface Structure: A Lesson from Nature on Photonic Crystals Design. 10th International Symposium on Photonic and Electromagnetic Crystal Structures(PECS-X), Santa Fe, NM, USA (2012)
Erbe, A.: Native and electrochemically grown oxides on metals: The dark side of semiconductor research. Seminar Talk at NTH School for Contacts in Nanosystems Spring Workshop 2012, Goslar, Germany (2012)
Erbe, A.: Oberflächendesign für empfindliche ATR-Spektroskopie in Modellexperimenten zum Verständnis der Korrosion. Bruker Optik Anwendertreffen, Ettlingen, Germany (2011)
Erbe, A.: Oberflächendesign für empfindliche ATR-Spektroskopie in Modellexperimenten zum Verständnis der Korrosion. Bruker Optik Anwendertreffen, Ettlingen, Germany (2011)
Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.: The three-dimensional photonic crystal in scales of the weevil Entimus imperialis: A natural D-surface bicontinuous structure. Geometry of Interfaces, Primošten, Croatia (2011)
Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Structure/function relations of a diamond-based photonic crystal structure in scales of the weevil Entimus imperialis (Curculionidae). Euromat 2011, Montpellier, France (2011)
Chen, Y.; Schneider, P.; Erbe, A.: In-situ ellipsometric monitoring of electrochemical preparation of ZnO nanoplates. 62nd Annual Meeting of the International Society of Electrochemistry, Niigata, Japan (2011)
Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A.: In situ Electrochemical ATR-IR Investigation of the Oxygen Reduction on Germanium. 62nd Annual Meeting of the International Society of Electrochemistry, Niigata, Japan (2011)
Erbe, A.: Optical surface design for sensitive internal reflection infrared spectroscopy and applications to electrochemical questions. Seminar, Université de Fribourg, Department of Physics, Fribourg, Switzerland (2011)
Wu, X.; Erbe, A.; Fabritius, H. O.; Raabe, D.: Structure and function of the biological photonic crystals in the scales of a beetle. European Materials Research Society E-MRS Spring Meeting 2011, May 2011, Nice, France (2011)
Erbe, A.: Thin amorphous oxides and intermediates in chemical reactions: Challenging problems in interface science probed with photons. Mini-Workshop on Surface Science for Inauguration of the Turkish Surface Science Society, Ankara, Turkey (2011)
Erbe, A.: From electrochemistry to colloidal interfaces - optical answers to chemical questions. Seminar, Bilkent University, Department of Chemistry, Ankara, Turkey, (2011)
Erbe, A.: Optical design of interfaces for internal reflection infrared-spectroscopic experiments. Seminar, Karlsruhe Institute of Technology, Institute of Toxicology and Genetics. Karlsruhe, Germany (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.