GUO, Y.-l.; Zhang, S.; He, J.; Lu, W.; Jia, L.-n.; Li, Z.; Zhang, H.: Transition from micro-rod to nano-lamella eutectics and its hardening effect in niobium/silicide in-situ composites. Transactions of Nonferrous Metals Society of China (English Edition) 33 (8), pp. 2406 - 2416 (2023)
Moravcik, I.; Zelený, M.; Dlouhý, A.; Hadraba, H.; Moravcikova-Gouvea, L.; Papež, P.; Fikar, O.; Dlouhy, I.; Raabe, D.; Li, Z.: Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments. Science and Technology of Advanced Materials 23 (1), pp. 376 - 392 (2022)
Guo, Y.; Jia, L.; He, J.; Zhang, S.; Li, Z.; Zhang, H.: Interplay between eutectic and dendritic growths dominated by Si content for Nb–Si–Ti alloys via rapid solidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME 144 (6), 061007 (2022)
Peng, J.; Wang, R.; Zhu, M.; Li, Z.; Liu, H.; Mukherjee, A. K.; Hu, T.: 2430% Superplastic strain in a eutectic Au–Sn alloy with micrometer-sized grains maintained by spinodal-like decomposition. Acta Materialia 228, 117766 (2022)
Wang, D.; Lu, X.; Lin, M.; Wan, D.; Li, Z.; He, J.; Johnsen, R.: Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation. Journal of Materials Science & Technology 98, pp. 118 - 122 (2022)
Wang, Z.; Lu, W.; Min Song, F. A.; Ponge, D.; Raabe, D.; Li, Z.; Li, Z.: High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications 13, 3598 (2022)
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…