Borodin, S.; Rohwerder, M.: Preparation of model single crystalline aluminium oxide films suitable for scanning tunnelling microscopy. DPG Tagung 2008, 72. Jahrestagung der Deutsche Physikalische Gesellschaft, Berlin, Germany (2008)
Michalik, A.; Rohwerder, M.: Long-range ion transport properties of conducting-polymers. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Rohwerder, M.: Intelligent corrosion protection by organic coatings based on conducting polymers. Departmental Seminar at Departement für Chemie und Biochemie der Universität Bern, Bern, Switzerland (2008)
Borissov, D.; Rohwerder, M.: Fundamental Investigation of the Effect of Oxides on the Reaction Kinetics During Hot Dip Galvanizing. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Isik-Uppenkamp, S.; Laaboudi, A.; Rohwerder, M.: Delamination of Polymer/Metal Interfaces: On the Correlation of Kinetics and Interfacial Structure. 212th ECS Meeting, Washington, D.C., USA (2007)
Borodin, S.; Rohwerder, M.: STM-investigation of self-assembly of phosphonates on model oxides. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Laaboudi, A.; Isik-Uppenkamp, S.; Rohwerder, M.: Modelling cathodic delamination: Oxygen reduction and interface degradation at a molecularly well defined coating/metal interface. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flagey, Belgium (2007)
Isik-Uppenkamp, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe Microscopy for characterisation of iron mobility at buried interfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Van De Putte, T.; Borissov, D.; Loison, D.; Penning, J.; Rohwerder, M.; Claessens, S.: Reduction of SiO2 Surface Oxides by Solute Carbon to Improve the Galvanizability of Si alloyed AHSS. International Conference on New Developments in Advanced High Strength Sheet Steels, Orlando, FL, USA (2007)
Rohwerder, M.: Inherent delamination protection by novel zinc alloys. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Rohwerder, M.: Release-Systeme für die Selbstheilung von Polymer/Metall-Grenzflächen. 2.WING Konferenz (BMBF): Der Stoff, aus dem Innovationen sind., Aachen, Germany (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of guest molecules from modified mesoporous silica. 5th International Mesostructured Materials Symposium, Shanghai, China (2006)
Michalik, A.; Paliwoda-Porebska, G.; Rohwerder, M.: Mechanism of corrosion protection by conducting polymers. 57th Annual Meeting of the International Society of Electrochemistry, Edinburgh, UK (2006)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.