Stein, F.; Sauthoff, G.; Palm, M.: Experimental Determination of the Ternary Fe–Al–Zr Phase Diagram. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Palm, M.; Sauthoff, G.: Manufacturing and Testing of a Novel Advanced NiAl-Base Alloy for Gas Turbine Applications. Materials for Advanced Power Engineering 2002 (Proc. 7th Liège Conference), Liege (2002)
Ducher, R.; Lacaze, J. C.; Stein, F.; Palm, M.: Experimental Study of the Liquidus Surface of the Al–Fe–Ti System. Thermodynamics of Alloys - TOFA 2002, Univerità degli Studi di Roma “La Sapienza”, Rome, Italy (2002)
Ducher, R.; Stein, F.; Palm, M.; Lacaze, J. C.: Nouvelle évaluation de la surface de liquidus du système ternaire Ti–Al–Fe. CPR “Intermetalliques base titane”, Seminar “Alliages TiAl”, Aspet, Haute-Garonne, France (2002)
Stein, F.; Palm, M.; Sauthoff, G.: New results on intermetallic phases, phase equilibria, and phase transformation temperatures in the Fe–Zr system. Materials Week 2000, München, Germany (2000)
Eumann, M.; Palm, M.; Sauthoff, G.: Constitution, Microstructure and Mechanical Properties of Ternary Fe–Al–Mo Alloys. EUROMAT 99, Munich, Germany (1999)
Palm, M.; Stein, F.: Phase Equilibria in the Al-rich part of the Al–Ti system. 2nd International Symposium on Gamma Titanium Aluminides, TMS Annual Meeting, San Diego, CA, USA (1999)
Palm, M.; Gorzel, A. H.; Letzig, D.; Sauthoff, G.: Structure and Mechanical Properties of Ti–Al–Fe Alloys at Ambient and High Temperatures. Structural Intermetallics 1997, Seven Springs, PA, USA (1997)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimentelle Untersuchungen der Hochtemperaturgleichgewichte im System Ti–Al. DGM Hauptversammlung 1993, Friedrichshafen, Germany (1993)
Palm, M.: Phase Equilibria and Phase Diagrams. Lecture: 4th MSIT Winter School on Materials Chemistry, Castle Ringberg, Tegernsee, February 16, 2020 - February 20, 2020
Palm, M.: Phase diagrams and phase transformations. Lecture: Education Seminar 5th International Workshop on Titanium Aluminides, Tokyo, Japan, August 28, 2016
Scandium-containing aluminium alloys are currently attracting interest as candidates for high-performance aerospace structural materials due to their outstanding combination of strength, ductility and corrosion resistance. Strengthening is achieved by precipitation of Al3Sc-particles upon ageing heat treatment.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Wear-related energy loss and component damage, including friction and remanufacturing of components that failed by surface contacts, has an incredible cost. While high-strength materials generally have low wear rates, homogeneous deformation behaviour and the accommodation of plastic strain without cracking or localised brittle fracture are also…
Multiple Exciton Generation (MEG) is a promising pathway towards surpassing the Shockley-Queisser limit in solar energy conversion efficiency, where an incoming photon creates a high energy exciton, which then decays into multiple excitons.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
The exploration of high dimensional composition alloy spaces, where five or more alloying elements are added at near equal concentration, triggered the development of so-called high entropy (HEAs) or compositionally complex alloys (CCAs). This new design approach opened vast phase and composition spaces for the design of new materials with advanced…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Interstitial alloying in high-entropy alloys (HEAs) is an important strategy for tuning and improving their mechanical properties. Strength can be increased due to interstitial solid-solution hardening, while interstitial alloying can simultaneously affect, e.g., stacking fault energies (SFEs) and thus trigger different deformation mechanisms…