Rohwerder, M.: Zinc alloy coatings and nano-composite coatings for corrosion protection: From the basics to new challenges. IIM NMD ATM 2019: Advanced Materials for Industrial and Societal Applications, Kovalam, Thiruvananthapuram, India (2019)
Rohwerder, M.: Intelligent coatings for corrosion protection: on the need for new coating concepts. International Conference on Corrosion Protection and Application (ICCPA 2019), Chongqing, China (2019)
Rohwerder, M.: Scanning Kelvin Probe based techniques for mapping hydrogen distribution in metals and their application for investigating hydrogen embrittlement. Workshop “Hydrogen in Metals”, St Anne’s College, Oxford, UK (2019)
Uebel, M.; Rabe, M.; Rohwerder, M.: The Influence of Microstructure on Zn–Al–Mg Alloy Reactivity: A SKP-based Approach. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH – Scientific Highlights Session, Düsseldorf, Germany (2019)
Rohwerder, M.: Die Kelvinsondentechnik in der Korrosion: von der Grundlagenforschung bis hin zu potentiellen Anwendungen im Feld. ProcessNet Meeting “Elektrochemische Prozesse”, Dechema-Haus, Frankfurt, Germany (2019)
Uebel, M.; Rohwerder, M.: The influence of microstructure on Zn–Al–Mg alloy reactivity investigated by SKP and SKPFM in changing atmospheres. Eurocorr 2018, Krakow, Poland (2018)
Rohwerder, M.; Tran, T. H.: Novel zinc-nanocontainer composite coatings for intelligent corrosion protection. 11th Intrenational Conference on Zinc And Zinc Alloy Coated Steel Sheet- GALVATECH 2017, The University of Tokyo, Tokyo, Japan (2017)
Merz, A.; Rohwerder, M.: Corrosion protection by composite coatings containing conducting polymer particles: elucidation of the “protection zone”. 232nd ECS Fall Meeting 2017, National Harbour, USA (2017)
Rohwerder, M.: Organic coatings for corrosion protection: self-healing at the delaminated interface. 232th Meeting of the Electrochemical Society, National Harbor, USA (2017)
Uebel, M.; Rohwerder, M.: Capsular networking and accelerated trigger signal spreading velocity in smart redox responsive coatings for corrosion protection. 232nd ECS Fall Meeting 2017, National Harbor, MD (greater Washington, DC area), USA (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. ECASIA 2017, Montpellier, France (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. Second International Conference on Electrochemical Science and Technology – ICONEST 2017, Indian Institute of Science, Bangalore, India (2017)
Uebel, M.; Rohwerder, M.: The impact of trigger signal spreading velocity on self-healing performance in smart anti-corrosion coatings. 6th International Conference on Self-Healing Materials (ICSHM) 2017, Friedrichshafen, Germany (2017)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 10th International Workshop on Application of Electrochemical Techniques to Organic Coatings –AETOC, Billerbeck, Germany (2017)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.