Dehm, G.: Probing deformation mechanisms of Cu structures relevant for electronic applications. Electronic Materials and Applications, Orlando, FL, USA (2015)
Dehm, G.: Phase stability in nanostructured metallic materials with exceptional strength. 2015 MRS Fall Meeting, Symposium VV: In situ study of synthesis and transformation of materials, Boston, MA, USA (2015)
Harzer, T. P.; Djaziri, S.; Raghavan, R.; Dehm, G.: Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Probing deformation and fracture of materials with high spatial resolution. EDSA 2015 – International Workshop on Stress Assisted Environmental Damage in Structural Materials, Chennai, India (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Are micro-fracture tests reliable? 2015 MRS Fall Meeting and Exhibit - Symposium T: Strength and Failure at the Micro and Nano-scale-From fundamentals to Applications
, Boston, MA, USA (2015)
Dehm, G.: Differences in deformation behavior of Cu structures containing individual grain boundaries. Symposium RR: Scaling Effects in Plasticity - Synergy between Simulations and Experiments, Fall MRS, Boston, MA, USA (2014)
Hodnik, N.; Baldizzone, C.; Jeyabharathi, C.; Dehm, G.; Mayrhofer, K. J. J.: Bridging the gap between electrochemistry and microscopy: electrochemical IL-TEM and in-situ electrochemical TEM study. 2nd Conference on in In-situ and Correlative Electron Microscopy, Saarbrücken, Germany (2014)
Marx, V. M.; Cordill, M. J.; Kirchlechner, C.; Dehm, G.: In-situ stress measurements in thin films using synchrotron diffraction. Summer School: Theory and Practice of Modern Powder Diffraction, Tagungshaus Schönenberg, Ellwangen, Ellwangen, Germany (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Design and development of fracture property measurement techniques at the small scale. ICAMS (RUB), Bochum, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Berger, J.; Cordill, M. J.; Dehm, G.: In-situ stress measurements in Cu films using synchrotron radiation. "Mechanical Issues for Flexible Electronics" Flex Workshop, Erich Schmid Institut, Leoben, Leoben, Austria (2014)
Dehm, G.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. Schöntal Symposium - Dislocation-based Plasticity, Kloster Schöntal, Germany (2014)
Dehm, G.; Imrich, P. J.; Wimmer, A. C.; Kirchlechner, C.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. TMS2014, 143rd Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Clamped beam geometry for fracture toughness testing of (Pt,Ni)Al bond coats at the micron-scale. AK- Rasterkraftmikroskopie und Nanomechanische Methoden, Düsseldorf, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Effects of the film thickness on the deformation behavior of thin Cu films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2014)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Advanced microscopy and spectroscopy offer unique opportunities to study the structure, composition, and bonding state of individual atoms from within complex, engineering materials. Such information can be collected at a spatial resolution of as small as 0.1 nm with the help of aberration correction.
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.