Dmitrieva, O.; Choi, P.; Ponge, D.; Raabe, D.; Gerstl, S. S. A.: Laser-pulsed atom probe studies of a complex maraging steel: Laser pulse energy variation and precipitate analysis. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Li, Y. J.; Choi, P.; Borchers, C.; Chen, Y.Z.; Goto, S.; Raabe, D.; Kirchheim, R.: Atom Probe Tomography characterization of heavily cold drawn pearlitic steel wire. 52nd International Field Emission Symposium (IFES), Sydney, Australia (2010)
Ponge, D.; Raabe, D.: Nano-particles and filaments in steels: From understanding to materials design. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Raabe, D.; Li, Y. J.; Choi, P.; Sauvage, X.; Kirchheim, R.; Hono, K.: Atomic-scale mechanisms in mechanical alloying - Towards the limits of strength in ductile nano-structured bulk materials. International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM) 2010, ETH Zürich, Switzerland (2010)
Winning, M.; Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.: Recrystallization and grain growth in ultra fine grained materials produced by high pressure torsion. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Dmitrieva, O.; Dondl, P. W.; Müller, S.; Svirina, J. V.; Raabe, D.: Microstructural analysis of the deformation laminates in single crystals: Experiments and theory. European Congress on Computational Mechanics ECCM 2010, Paris, France (2010)
Eisenlohr, P.; Kords, C.; Roters, F.; Raabe, D.: A non-local constitutitve hardening model based on polar dislocation densities. IV European Conf. Comp. Mech. ECCM 2010, Paris, France (2010)
Zambaldi, C.; Raabe, D.; Roters, F.: Quantifying the plastic anisotropy of gamma-TiAl by axisymmetric indentation. International TiAl Workshop, Birmingham, UK (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. 15th GLADD meeting 2010, Delft, The Netherlands (2010)
Roters, F.; Tjahjanto, D. D.; Eisenlohr, P.; Raabe, D.: Homogenisierung von Mehrphasenwerkstoffen zur Simulation von Umformprozessen. 13. Workshop Simulation in der Umformtechnik, Modellierung von Verfestigungsmechanismen in der Blechumformung, Institut für Umformtechnik, Universität Stuttgart, Germany (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Fundamental Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys Determined from Quantum-Mechanical Calculations. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…