Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. European Atom Probe Workshop 2013 at ETH Zürich, Zürich, Switzerland (2013)
Tasan, C. C.; Diehl, M.; Yan, D.; Shanthraj, P.; Roters, F.; Eisenlohr, P.; Raabe, D.: Integrated in-situ experiments – full field crystal plasticity simulations to analyze stress – strain partitioning in multi-phase alloys. Nanomechanical Testing in Materials Research and Development IV, Olhão, Algarve, Portugal (2013)
Tasan, C. C.; Wang, M.; Ponge, D.; Kostka, A.; Raabe, D.: Size effects on austenite stability investigated by in-situ EBSD. BSSM 9th Int. Conf. on Advances in Experimental Mechanics, Cardiff, UK (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. BSSM 9th Int. Conf. on Advances in Experimental Mechanics, Cardiff, UK (2013)
Gutiérrez-Urrutia, I.; Raabe, D.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique to characterize deformation structures in the SEM. Euromat 2013, Sevilla, Spain (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Euromat 2013, Sevilla, Spain (2013)
Kuzmina, M.; Ponge, D.; Raabe, D.: Embrittlement effect in medium Fe–Mn alloys. Study of grain boundary segregation. Euromat 2013, Sevilla, Spain (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Zhang, H.; Ponge, D.; Raabe, D.: The superplasticity evaluation of a Mn–Si–Cr alloyed steel at different microstructural and deformation conditions. Euromat 2013, Sevilla, Spain (2013)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…