Scheu, C.: Insights into structural and functional properties of nano-structured electrodes for energy and fuel generating devices. Talk at Helmholtz‐Zentrum Geesthacht, Geesthacht, Germany (2016)
Scheu, C.: Correlative STEM & Atom Probe Tomography (ATP): Insights in the k-carbide/austenite interface. Workshop on “New trends in electron microscopy”, Ringberg Castle, Kreuth am Tegernsee, Germany (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Folger, A.; Wisnet, A.; Scheu, C.: Defects in as-grown vs. annealed rutile titania nanowires and their effect on properties. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. The 16th European Microscopy Congress (EMC 2016), Lyon, France (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting of epitaxial Al thin films on sapphire studied by electron microscopy. Materials Research Society Fall Meeting & Exhibition 2016 (MRS Fall 2016), Boston, MA, USA (2016)
Scheu, C.: New insights into HTPEM fuel cells using electron microscopy techniques. THERMEC’2016: 9th International Conference on Processing & Manufacturing of Advanced Materials, Graz, Austria (2016)
Scheu, C.: Atomic arrangement and defects in Nb3O7(OH) and TiO2 nanoarrays and their effect on functional properties. Talk at Institut für Anorganische und Analytische Chemie, Universität Freiburg, Freiburg, Germany (2016)
Scheu, C.: Dewetting of epitaxial Al thin films on (0001) single crystalline sapphire substrates. Materials Science & Technology (MS&T), Columbus, OH, USA (2015)
Scheu, C.: Challenges in nanostructured photovoltaic devices. IAMNano 2015 - International Workshop on Advanced and In‐situ Microscopies of Functional Nanomaterials and Devices, Hamburg, Germany (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopic insights into degradation processes in high temperature polymer electrolyte membrane fuel cells. Scandem 2015, Jyväskylä, Finland (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. Understanding Grain Boundary Migration: Theory Meets Experiment, Günzburg/Donau, Germany (2015)
Scheu, C.: Structural and Functional Properties of Nb3O7(OH) and TiO2 Nanoarrays. Max Planck POSTECH/KOREA Symposium on Frontiers in Materials Science, Pohang, Korea (2015)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Advanced microscopy and spectroscopy offer unique opportunities to study the structure, composition, and bonding state of individual atoms from within complex, engineering materials. Such information can be collected at a spatial resolution of as small as 0.1 nm with the help of aberration correction.
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…