Neddermann, P.; Ponge, D.; Raabe, D.: Influence of Chromium on the Low Temperature Austenite Reversion through Local Equilibrium in Martensitic Stainless Steel. MSE 2014, Darmstadt, Germany (2014)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic Investigation of the Influence of Strain Amplitude, Orientation and Cycle Number on the Dislocation Structures Formed during Low Cycle Fatigue. MSE 2014, Darmstadt, Germany (2014)
Koprek, A.; Cojocaru-Mirédin, O.; Freysoldt, C.; Würz, R.; Raabe, D.: Atomic scale investigation of the p-n Junction in CIGS based solar cells: correlation between cell efficiency and impurities. E-MRS 2014, Lille, France (2014)
Archie, F. M. F.; Zaefferer, S.; Raabe, D.: The influence of grain boundary character on dislocation densities and fracture toughness in AHSS. M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.: From Crystal Plasticity to Forming Simulations: The "Virtual Laboratory". M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Winter School 2014, Research Training Group 1483,
Karlsruher Intitut f. Technologie (KIT), Karlsruhe, Germany (2014)
Djaziri, S.; Li, Y.; Goto, S.; Kirchlechner, C.; Raabe, D.; Dehm, G.: Microstructural characterization of cold-drawn pearlitic steel wires at the nanometer scale. The Thin Film & Small Scale Mechanical Behavior Gordon Research Conference, Waltham, MA, USA (2014)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Yan, D.; Tasan, C. C.; Raabe, D.: Graded, ultrafine-grained, ferrite/martensite dual phase steel: a case study for damage-resistant microstructure design. Physics based materials models and experimental observations, Cesme Turkey (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Enax, J.; Fabritius, H.-O.; Prymak, O.; Raabe, D.; Epple, M.: Synthetische Fluorapatit/Polymer-Dentalkomposite, basierend auf dem Vorbild Haizahn-Enameloid. Jahrestagung der Deutschen Gesellschaft für Biomaterialien, Erlangen, Germany (2013)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic and efficient investigation of the influences on the dislocation structures formed during low cycle fatigue in austenitic stainless steel. Euromat 2013, Sevilla, Spain (2013)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…