Stein, F.; Dovbenko, O. I.; Palm, M.: Phase Relations between Laves Phases in Transition Metal Systems - Case Studies: Co–Nb, Al–Co–Nb, Cr–Ti, Fe–Zr, Al–Fe–Zr. EUROMAT 2005, Prague, Czech Republic (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Phase Equilibria in the Al–Co–Nb Ternary System in the Vicinity of the Laves Phases. CALPHAD XXXIV, Maastricht, The Netherlands (2005)
Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. 2nd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Toulouse, France (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System. Preliminary Results. International Workshop "Laves Phases IV", MPI für Eisenforschung, Düsseldorf, Germany (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System using Liquid-Solid Diffusion Couples. Preliminary Results. COST 535 Diffusion Couple Workshop, MPI für Eisenforschung, Düsseldorf, Germany (2004)
Stein, F.; Jiang, D.; Palm, M.; Sauthoff, G.: Laves Phase Polytypism in the Co–Nb System. TOFA 2004 - Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung. Düsseldorf, Germany (2004)
Palm, M.; Eumann, M.; Sauthoff, G.: Improving Properties of Fe-Al Based Alloys by Increasing the Stability Range of DO3/L21 Order. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf (2004)
Siggelkow, L.; Kreiner, G.; Palm, M.; Stein, F.: Synthese und Eigenschaften der intermetallischen Phasen Nb2Co7. Workshop "The Nature of Laves Phases VIII", Düsseldorf, Germany (2004)
Palm, M.: Determination and application of the Al–Ti and Al–Fe–Ti phase diagrams. Colloquium at ONERA / Colloquium at Universite de Rouen, Chatillon / Rouen, France (2003)
Stein, F.; Palm, M.; Sauthoff, G.: Structures and Stability of Laves Phases. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Stein, F.; Sauthoff, G.; Palm, M.: Intermetallic Phases and Phase Equilibria in the Fe–Zr and Fe–Zr–Al Systems. Discussion Meeting on Thermodynamics of Alloys (TOFA 2002), Rome, Italy (2002)
Palm, M.; Sauthoff, G.: Characterization and Processing of an Advanced Intermetallic NiAl-Base Intermetallic Alloy for High-Temperature Applications. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming (2002)
Palm, M.: Evaluation of alloy systems for developing new intermetallic lightweight intermetallic materials. Colloquium at CIRIMAT-ENSIACET, Toulouse, France (2002)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).