Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. 17th U.S. National Congress on Theoretical and Applied Mechanics Michigan State University, East Lansing, MI, USA (2014)
Tasan, C. C.; Jeannin, O.; Barbier, D.; Morsdorf, L.; Wang, M.; Ponge, D.; Raabe, D.: In-situ characterization of martensite plasticity by high resolution microstructure and microstrain mapping. ICOMAT 2014, International Conference on Martensitic Transformations 2014, Bilbao, Spain (2014)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Deformation micro-mechanisms in medium-Mn TRIP-maraging steel. 2nd International Conference on High Manganese Steel, HMnS 2014, Aachen, Germany (2014)
Springer, H.; Belde, M.; Raabe, D.: Bulk combinatorial design of high strength martensitic steels utilising austenite reversion and cryogenic strengthening. Thermec Conference, Las Vegas, NV, USA (2013)
Tasan, C. C.; Springer, H.; Lai, M.; Zhang, J.-I.; Raabe, D.: Influence of oxygen on the deformation behavior of Ti–Nb–Ta–Zr alloys. Thermec 2013, Las Vegas, NV, USA (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete Dislocation Dynamics Study of Creep Anisotropy in Single Crystal Ni Base Superalloys. MRS Fall Meeting, Bosten, USA (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.