Race, C. P.; von Pezold, J.; Neugebauer, J.: Simulations of Grain Boundary Migration via the Nucleation and Growth of Islands. MSE Congress 2012, Darmstadt, Germany (2012)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Simulations of grain boundary migration via the nucleation and growth of islands. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Towards an ab-initio based understanding of H-embrittlement: An atomistic study of the HELP mechanism. Joint Hydrogenius and ICNER International Workshop on Hydrogen-Materials Interactions, Kyushu, Japan (2012)
Korbmacher, D.; von Pezold, J.; Spatschek, R.: Hydrogen embrittlement - A scale bridging perspective. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Haghighat, S. M. H.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Effect of local stress state on the glide of ½a₀<111> screw dislocation in bcc-Fe. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamics of the strain-induced dissolution of cementite in pearlitic structure steel: An ab-initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Grain boundary migration via the nucleation and growth of islands in molecular dynamics. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
von Pezold, J.; Neugebauer, J.: Effect of H on homogeneous dislocation nucleation: Consequences for hydrogen embrittlement. DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM), Dresden, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.