Keuter, P.: Design of materials with anomalous thermophysical properties and desorption-assisted phase formation of intermetallic thin films. Dissertation, RWTH Aachen University (2020)
Pei, R.: Microstructural Relationships of Strength and Ductility in a Newly Developed Mg–Al–Zn Alloy for Potential Automotive Applications. Dissertation, RWTH Aachen University (2020)
Pei, R.: Microstructural Relationships of Strength and Ductility in a Newly Developed Mg–Al–Zn Alloy for Po-tential Automotive Applications. Dissertation, RWTH Aachen University (2020)
Kürnsteiner, P.: Precipitation Reactions During the Intrinsic Heat Treatment of Laser Additive Manufacturing. Dissertation, RWTH Aachen University (2019)
Dutta, A.: Deformation behaviour and texture memory effect of multiphase nano-laminate medium manganese steels. Dissertation, RWTH Aachen University (2019)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufac-turing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufacturing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Chang, Y.: Challenges and opportunities associated to the characterization of H/D in Ti and its alloys with atom probe tomography. Dissertation, RWTH Aachen University (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
A wide range of steels is nowadays used in Additive Manufacturing (AM). The different matrix microstructure components and phases such as austenite, ferrite, and martensite as well as the various precipitation phases such as intermetallic precipitates and carbides generally equip steels with a huge variability in microstructure and properties.