Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: On the Role of Trigger Signal Spreading Velocity for Efficient Self-Healing Coatings for Corrosion Protection. Journal of the Electrochemical Society 165 (16), pp. C1017 - C1027 (2018)
Dandapani, V.; Tran, T. H.; Bashir, A.; Evers, S.; Rohwerder, M.: Hydrogen Permeation as a Tool for Quantitative Characterization of Oxygen Reduction Kinetics at Buried Metal-Coating Interfaces. Electrochimica Acta 189, pp. 111 - 117 (2016)
Tran, T. H.; Gerlitzky, C.; Rohwerder, M.; Groche, P.: Which properties must a surface have to be suitable for cold pressure welding? 22nd International Conference on Material Forming (ESAFORM 2019), Mondragon Unibrtsitatae, Spain, May 08, 2019 - May 10, 2019. AIP Conference Proceedings 2113, 050019, (2019)
Uebel, M.; Tran, T. H.; Altin, A.; Gerlitzky, C.; Erbe, A.; Groche, P.: Which Properties Must a Surface have to be Suitable for Cold Pressure Welding? 22nd International Conference on Material Forming (ESAFORM 2019), Mondragon Unibrtsitatae, Spain (2019)
Rohwerder, M.; Tran, T. H.: Novel zinc-nanocontainer composite coatings for intelligent corrosion protection. 11th Intrenational Conference on Zinc And Zinc Alloy Coated Steel Sheet- GALVATECH 2017, The University of Tokyo, Tokyo, Japan (2017)
Uebel, M.; Vimalanandan, A.; Tran, T. H.; Rohwerder, M.: Coatings for intelligent self-healing of macroscopic defects: first results and the major challenges. eMRS, Symposium „Self-Healing Materials", Warsaw, Poland (2015)
Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: Role of Trigger Signal Spreading Velocity on Self-healing Capability of Intelligent Coatings for Corrosion Protection. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2019)
Vimalanandan, A.; Altin, A.; Tran, T. H.; Rohwerder, M.: Conducting Polymers for Corrosion Protection - Raspberry like shaped ICP “pigments”. Gordon Research Conference Corrosion-Aqueous, New London, NH, USA (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…