Cha, S. C.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. Materials Science Forum 461–464, p. 1055 - 1055 (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on metal surfaces. In: NACE CORROSION‘ 04, 04533. NACE CORROSION‘ 04, New Orleans, LA, USA. (2004)
Cha, S. C.; Spiegel, M.: Local reaction between NaCl and KCl particles and metal surfaces. In: Proceedings of EUROCORR '04, 1. Proceedings of EUROCORR '04, Nice, France, 2004. (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on iron surfaces. NACE CORROSION‘ 04, New Orleans, LA, USA (2004)
Cha, S. C.; Spiegel, M.: Local reactions of KCl particles with Fe, Ni and Cr surfaces. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Cha, S. C.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. 6th Int. Symposium on High temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
Cha, S. C.; Vogel, D.; Spiegel, M.: Fundamental studies on alkali chloride induced corrosion during combustion of biomass. 18. Stahlkolloquium, Eurogress Aachen, Aachen, Germany (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…