Diehl, M.: Crystal Plasticity Simulations on Real Data: Towards Highly Resolved 3D Microstructures. Seminar des Instituts für Mechanik, KIT, Karlsruhe, Germany (2016)
Roters, F.; Diehl, M.; Shanthraj, P.: Crystal Plasticity Simulations - Fundamentals, Implementation, Application. Micromechanics of Materials, Zernike Institute for Advanced Materials, University of Groningen
, Groningen, The Netherlands (2016)
Roters, F.; Diehl, M.; Shanthraj, P.: DAMASK Evolving From a Crystal Plasticity Subroutine Towards a Multi-Physics Simulation Tool. Focus Group Meeting “Metals”, SPP 1713, Bad Herrenalb, Germany (2016)
Roters, F.; Zhang, C.; Eisenlohr, P.; Shanthraj, P.; Diehl, M.: On the usage of HDF5 in the DAMASK crystal plasticity toolkit. 2nd International Workshop on Software Solutions for Integrated Computational Materials Engineering - ICME 2016, Barcelona, Spain (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: An atomistically-informed crystal plasticity model to predict the temperature dependence of the yield strength of single-crystal tungsten. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Diehl, M.; Eisenlohr, P.; Roters, F.; Shanthraj, P.; Reuber, J. C.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Seminar of the Centro Nacional de Investigaciones Metalúrgicas (CENIM) del CSIC , Madrid, Spain (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.