Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size-dependent coherent twin boundary strength contribution in Cu micropillars. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. ECI conference 2022, Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Jentner, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Challenges in the phase identification of steels using unsupervised clustering of nanoindentation data. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Pemma, S.; Brink, T.; Janisch, R.; Dehm, G.: Stress driven grain boundary migration for different complexions of a Cu tilt grain boundary. Materials Science and Engineering Congress 2022, Darmstadt, Germany (2022)
Dehm, G.: New insights on the atomic grain boundary structure in pure and alloyed Cu and Fe. 10th International Workshop on Interfaces, Santiago de Compostele, Spain (2022)
Dehm, G.: Structure and properties of tilt grain boundaries in Cu thin films. Graduiertenkollegs GRK1896 „In situ microsopy with electrons, X-rays and scanning probes: Abschlusssymposium, Erlangen, Germany (2022)
Dehm, G.: Grain Boundary Phases (Complexions) in Pure and Alloyed Cu: Insights from Advanced Electron Microscopy and Molecular Dynamics. Gordon Research Conference Structural Nanomaterials, Les Diablerets, Switzerland (2022)
Dehm, G.: Grain boundary phase transitions in pure and alloyed Cu. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2022, Berndkastel-Kues, Germany (2022)
Dehm, G.; Rao, J.; Duarte, M. J.: Impact of Hydrogen on Dislocation Nucleation and Strength in bcc Fe–Cr alloys. TMS 2022 Annual Meeting, Symposium “Mechanical Behavior at the Nanoscale VI”, Anaheim, CA, USA (2022)
Hosseinabadi, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Impact of an incoherent twin boundary on the mechanical response of Cu bi-crystalline micropillars. 11th European Solid Mechanics Conference - ESMC 2022, Galway, Ireland (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.