Zhang, J.; Morsdorf, L.; Tasan, C. C.: Multi-probe microstructure tracking during heat treatment without an in-situ setup: Case studies on martensitic steel, dual phase steel and β-Ti alloy. Materials Characterization 111, pp. 137 - 146 (2016)
Pradeep, K. G.; Tasan, C. C.; Yao, M.; Deng, Y.; Springer, H.; Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 648, pp. 183 - 192 (2015)
Wang, M.; Tasan, C. C.; Koyama, M.; Ponge, D.; Raabe, D.: Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46 (9), pp. 3797 - 3802 (2015)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage resistance in gum metal through cold work-induced microstructural heterogeneity. Journal of Materials Science 50 (17), pp. 5694 - 5708 (2015)
Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence. Acta Materialia 95, pp. 366 - 377 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…