Löffler, F.; Sauthoff, G.; Palm, M.: Determination of phase equilibria in the Fe–Mg–Si system. International Journal of Materials Research 102 (8), pp. 1042 - 1047 (2011)
Rojas, D.; Prat, O.; Garcia, J.; Carrasco, C.; Sauthoff, G.; Kaysser-Pyzalla, A. R.: Design and Characterization of microstructure evolution during creep of 12%Cr heat resistant steels. Materials Science and Engineering A 527, pp. 3864 - 3876 (2010)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics 16 (6), pp. 834 - 846 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics 16 (5), pp. 706 - 716 (2008)
Isaac, A.; Sket, F.; Borbély, A.; Sauthoff, G.; Pyzalla, A. R.: Study of cavity evolution during creep by synchrotron microtomography using a volume correlation method. Praktische Metallographie/Practical Metllography 45 (5), pp. 242 - 245 (2008)
Isaac, A.; Sket, F.; Sauthoff, G.; Pyzalla, A.: In-situ 3D Quantification of the Evolution of Creep Cavity Size, Shape and Spatial Orientation using Synchrotron X-ray Tomography. Materials Science and Engineering A 478, pp. 108 - 118 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Re-evaluation of phase equilibria in the Al–Mo system. International Journal of Materials Research 97 (11), pp. 1502 - 1511 (2006)
Stallybrass, C.; Schneider, A.; Sauthoff, G.: The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 13 (12), pp. 1263 - 1268 (2005)
Stein, F.; Palm, M.; Sauthoff, G.: Mechanical Properties and Oxidation Behaviour of Two-Phase Iron Aluminium Alloys with Zr(Fe,Al)2 Laves Phase or Zr(Fe,Al)12 τ1 Phase. Intermetallics 13 (12), pp. 1275 - 1285 (2005)
Stein, F.; Palm, M.; Sauthoff, G.: Structure and stability of Laves phases. Part II: Structure type variations in binary and ternary systems. Intermetallics 13 (10), pp. 1056 - 1074 (2005)
Wasilkowska, A.; Bartsch, M.; Stein, F.; Palm, M.; Sauthoff, G.; Messerschmidt, U.: Plastic deformation of Fe–Al polycrystals strengthened with Zr-containing Laves phases: Part II. Mechanical properties. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 381 (1-2), pp. 1 - 15 (2004)
Stein, F.; Palm, M.; Sauthoff, G.: Structure and stability of Laves phases. Part I - Critical assessment of factors controlling Laves phase stability. Intermetallics 12 (7-9), pp. 713 - 720 (2004)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…