Po, G.; Admal, N. C.; Svendsen, B.: Non-local Thermoelasticity Based on Equilibrium Statistical Thermodynamics. Journal of Elasticity 139, pp. 37 - 59 (2020)
Kochmann, J.; Wulfinghoff, S.; Ehle, L.; Mayer, J.; Svendsen, B.: Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals. Computational Mechanics 61, pp. 751 - 764 (2018)
Alipour, A.; Wulfinghoff, S.; Bayat, H. R.; Reese, S.; Svendsen, B.: The concept of control points in hybrid discontinuous Galerkin methods—Application to geometrically nonlinear crystal plasticity. International Journal for Numerical Methods in Engineering 114 (5), pp. 557 - 579 (2018)
Svendsen, B.; Shanthraj, P.; Raabe, D.: Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids. Journal of the Mechanics and Physics of Solids 112, pp. 619 - 636 (2018)
Dusthakar, D. K.; Menzel, A.; Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials – application to tetragonal barium titanate. Mechanics of Materials 117, pp. 235 - 254 (2018)
Hütter, M.; Svendsen, B.: Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling. Materials Theory (1), 4, pp. 1 - 20 (2017)
Mianroodi, J. R.; Hunter, A. G. M.; Beyerlein, I. J.; Svendsen, B.: Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals. Journal of the Mechanics and Physics of Solids 95, pp. 719 - 741 (2016)
Kochmann, J.; Wulfinghoff, S.; Reese, S.; Mianroodi, J. R.; Svendsen, B.: Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Computer Methods in Applied Mechanics and Engineering 305, pp. 89 - 110 (2016)
Alper Kasirga wins the Max Planck Apprenticeship Award and the Max Planck Institute for Sustainable Materials is recognised as an excellent training institution
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.