Benedikt, U.; Schneider, W.; Auer, A. A.: Oxygen Reduktion Reaction On Pt-Nanoparticles: A Density-Functional Based Study II. Electrochemistry 2010: From Microscopic Understanding to Global Impact, Ruhr-Universität Bochum, Bochum, Germany (2010)
Schneider, W.; Auer, A. A.; Mehring, M.: Interactions of Main Group Elements and Aromatic Systems - A Theoretical Study. STC 2010 - Quantum Chemistry for Large and Complex Systems: From Theory to Algorithms and Applications, Münster, Germany (2010)
Schneider, W.; Benedikt, U.; Auer, A. A.: Oxygen Reduktion Reaction on Pt-Nanoparticles: A Density-Functional Based Study I. Electrochemistry 2010: From Microscopic Understanding to Global Impact, Ruhr-Universität Bochum, Bochum, Germany (2010)
Auer, A. A.: Grundlagen von Elektronenstrukturrechnungen. Lecture: Kompaktkurs "Grundlagen von Elektronenstrukturrechnungen", Institut für Chemie, TU Chemnitz, Germany, April 12, 2010 - July 23, 2010
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.