Duarte, M. J.; Fang, X.; Rao, J.; Krieger, W.; Brinckmann, S.; Dehm, G.: In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56 (14), pp. 8732 - 8744 (2021)
Tian, C.; Dehm, G.; Kirchlechner, C.: Influence of strain rate on the activation of {110}, {112}, {123} slip in ferrite of DP800. Materialia 15, 100983 (2021)
Laursen, C. M.; Peter, N. J.; Gerstein, G.; Maier, H. J.; Dehm, G.; Frick, C. P.: Influence of Ti3Ni4 precipitates on the indentation-induced two-way shape-memory effect in Nickel-Titanium. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 792, 139373 (2020)
Elhebeary, M.; Harzer, T. P.; Dehm, G.; Saif, M. T. A.: Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation. Proceedings of the National Academy of Sciences of the United States of America 117 (29), pp. 16864 - 16871 (2020)
Bishara, H.; Ghidelli, M.; Dehm, G.: Approaches to Measure the Resistivity of Grain Boundaries in Metals with High Sensitivity and Spatial Resolution: A Case Study Employing Cu. ACS Applied Electronic Materials 2 (7), pp. 2049 - 2056 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…