Balun, J.; Inden, G.; Eleno, L. T. F.; Schön, C. G.: Phase Equilibria in the Ternary Fe–Rh–Ti System. TMS Annual Meeting 2003, International Symposium on Intermetallic and Advanced Metallic Materials – A Symposium dedicated to Dr. C.T. Liu, San Diego, CA, USA (2003)
Zhang, J.; Schneider, A.; Inden, G.: Metal dusting of iron in CO–H2–H2O mixtures at 700 °C. EFC-Workshop: Metal Dusting, Carburisation and Nitridation, Frankfurt, Germany (2003)
Palm, M.; Inden, G.: Experimentelle Bestimmung der Phasengleichgewichte in den Systemen Fe–Al–Ti und Fe–Al–Cr. 15. Vortragsveranstaltung des DVM Arbeitskreises Rastermikroskopie in der Materialprüfung, Kassel, Germany (1992)
Kwiatkowski da Silva, A.; Ponge, D.; Inden, G.; Gault, B.; Raabe, D.: Physical Metallurgy of segregation, austenite reversion, carbide precipitation and related phenomena in medium Mn steels. Gordon Research Conference: Physical Metallurgy, Biddeford, ME, USA (2017)
Belde, M. M.; Springer, H.; Inden, G.; Raabe, D.: Tailoring multi-phase steel microstructures by controlling local chemical gradients. MSE 2014, Darmstadt, Germany (2014)
Eleno, L. T. F.; Schneider, A.; Inden, G.: Experimental determination and thermodynamic modelling of Fe-based high-melting alloys. Calphad XXXIV, Maastricht / The Netherlands (2005)
Schneider, A.; Zhang, J.; Inden, G.: Metal dusting of Fe3Al-based alloys. Annual Meeting 2003, Symposium: International Symposium on Intermetallics and Advanced Metallic Materials, San Diego, CA, USA (2003)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.