Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electrochemistry. TMS Annual Meeting, San Antonio, TX, USA (2013)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Planar Defects in Pure Iron. SFB-761 Annual Meeting 2013, Herdecke, Germany (2013)
Bleskov, I.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Magnetism on Thermodynamic Properties of Iron. International Symposium “Frontiers In Electronic Structure Theory And Multi Scale Modeling” (FEST-VEK), Moscow, Russia (2013)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: Defects in amorphous silicon from H insertion. Workshop "Spins as Functional Probes in Solar Energy Research", Berlin, Germany (2013)
Neugebauer, J.: Ab initio guided materials design: Application to doping and growth of group-III nitride. Colloquium, TH Ilmenau, Ilmenau, Germany (2013)
Neugebauer, J.: Modeling steels exhibiting unconventional deformation mechanisms based on ab initio based multiscale simulations. Kolloquium TH Ilmenau, Ilmenau, Germany (2013)
Neugebauer, J.: Modeling steels exhibiting unconventional deformation mechanisms based on ab initio based multiscale simulations. ESISM Workshop, Kyoto, Japan (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.