Neugebauer, J.: Fully ab initio determination of free energies: Basis for high-throughput approaches in materials design. DPG Frühjahrstagung 2013, Regensburg, Germany (2013)
Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electrochemistry. TMS Annual Meeting, San Antonio, TX, USA (2013)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Planar Defects in Pure Iron. SFB-761 Annual Meeting 2013, Herdecke, Germany (2013)
Bleskov, I.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Magnetism on Thermodynamic Properties of Iron. International Symposium “Frontiers In Electronic Structure Theory And Multi Scale Modeling” (FEST-VEK), Moscow, Russia (2013)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: Defects in amorphous silicon from H insertion. Workshop "Spins as Functional Probes in Solar Energy Research", Berlin, Germany (2013)
Neugebauer, J.: Ab initio guided materials design: Application to doping and growth of group-III nitride. Colloquium, TH Ilmenau, Ilmenau, Germany (2013)
Neugebauer, J.: Modeling steels exhibiting unconventional deformation mechanisms based on ab initio based multiscale simulations. Kolloquium TH Ilmenau, Ilmenau, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.